

Characterization of [³H]YM060, a potent and selective 5-HT₃ receptor radioligand, in the cerebral cortex of rats

Shinobu Akuzawa a,b,*, Keiji Miyata b, Hisayuki Fukutomi a

^a Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305, Japan
^b Neuroscience and Gastrointestinal Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21
Miyukigaoka, Tsukuba, Ibaraki 305, Japan

Received 31 October 1994; revised 4 April 1995; accepted 6 April 1995

Abstract

The binding properties of a new radioligand, [methyl- 3 H]-(-)-(R)-5-[(1-methyl- 1 H-indol- 3 -yl)carbonyl]-4,5,6,7-tetrahydro- 1 H-benzimidazole monohydrochloride ([3 H]YM060), were studied in membranes of the rat cerebral cortex. [3 H]YM060 rapidly associated with its binding sites in membranes and reversibly dissociated. Saturation analysis revealed that the specific binding of [3 H]YM060 was saturable and non-specific binding was low. Scatchard analysis yielded a linear plot, suggesting a single population of binding sites with a dissociation constant (K_d) of 8.4 ± 0.2 pM (n = 3) and the kinetic K_d determined from the association constant (K_{+1}) and the dissociation rate constant (K_{-1}) was similar. The maximum number of binding sites (B_{max}) was 37.0 ± 0.8 fmol/mg protein (n = 3). [3 H]YM060 binding was potently and stereospecifically inhibited by serotonin (5 -HT) $_3$ receptor agonists and antagonists. Other 5 -HT receptor ligands such as 8 -OH-DPAT (8 -hydroxy-2-(di- 9 -propylamino)tetralin), methysergide and ketanserin were inactive to inhibit specific binding at $^{10^{-4}}$ M. These results suggest that [3 H]YM060 is a highly potent and selective 5 -HT $_3$ receptor radioligand and will be useful in the further analysis of 5 -HT $_3$ receptors.

Keywords: $[^3H]YM060$ ([methyl- 3H]-(-)-(R)-5-[(1-methyl-1H-indol-3-yl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole monohydrochloride); 5- HT_3 receptor; Cerebral cortex, rat

1. Introduction

Serotonin (5-HT) is an important neurotransmitter which exerts its effects through several pharmacologically distinct receptors. 5-HT receptors can be divided into at least four (5-HT₁, 5-HT₂, 5-HT₃ and 5-HT₄ receptor), possibly up to seven (5-HT₅, 5-HT₆ and 5-HT₇ receptor) types (Hoyer et al., 1994). Of these, the 5-HT₃ receptor is unique in that it is a ligand-gated ion channel (Derkach et al., 1989). The 5-HT₃ receptor is widely distributed throughout the peripheral (Fozard, 1984) and central nervous systems (Kilpatrick et al., 1987), and has been proposed as the mediator of many physiological actions such as emesis (Fozard, 1987),

anxiety (Jones et al., 1988), cognitive function (Barnes et al., 1990) and stress-induced defecation (Miyata et al., 1992). Recently, cDNA encoding a single subunit of the 5-HT₃ receptor has been isolated from NCB-20 cells. The predicted protein is 487 amino acids long and contains four hydrophobic transmembrane spanning domains (Maricq et al., 1991). Species differences of the 5-HT₃ receptor have been reported for radioligand binding affinity and electrophysiological characteristics (Ito et al., 1992; Wong et al., 1993). No strong evidence is reported for the existence of different 5-HT₃ receptors within the same species except for different affinity of ligands in two mouse tissues (Bonhaus et al., 1993).

A number of radioligands have been used in the identification of 5-HT₃ receptors, including [³H]-GR65630 (Kilpatrick et al., 1987), [³H]ICS205-930 (Hoyer and Neijt, 1988), [³H]BRL43694 (Nelson and Thomas, 1989), [³H]zacopride (Barnes et al., 1988b), [¹²⁵I]zacopride (Laporte et al., 1992), [³H]GR67330 (Kilpatrick et al., 1990b) and [³H]RS-42358-197 (Wong

^{*} Corresponding author. Neuroscience and Gastrointestinal Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305, Japan. Tel. Japan-298-52-5111 ext. 2686, fax Japan-298-52-2965.

Fig. 1. Chemical structure of [methyl- 3 H]-(-)-(R)-5-[(1-methyl-1H-indol-3-yl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole monohydrochloride ([3 H]YM060). * Indicates the site at which the compound was radiolabeled with tritium.

et al., 1993). Most of these are useful for cells or tissues which have a high concentration of 5-HT₃ receptors. However, the detailed characterization of 5-HT₃ receptor binding sites is hampered by their generally low concentration in many species, including the rabbit, guinea pig, ferret and human (Barnes et al., 1988a; Kilpatrick et al., 1989).

YM060 is a tetrahydrobenzimidazole derivative which possesses potent 5-HT₃ receptor blocking properties both in vitro and in vivo (Miyata et al., 1991a,b). It inhibits [3 H]GR65630 binding in N1E-115 neuroblastoma cells with a K_{i} value of 0.091 nM (Ito et al., 1992). As it is likely that a ligand with high affinity for a receptor possesses high specific binding as a radioligand, we synthesized [3 H]YM060 (Fig. 1) and characterized it as a radioligand for 5-HT₃ receptors in cerebral cortex of rats.

2. Materials and methods

2.1. Tissue preparation

Male Wistar rats weighing 250–300 g were used. The rats were decapitated, their brains were rapidly removed and the cerebral cortex was dissected. The tissues were finely minced with scissors and homogenized in 30 volumes of ice-cold 50 mM Hepes buffer (pH 7.4 at 4° C) with a Polytron (Kinematica, Lucerne, Switzerland). The homogenate was centrifuged at $48\,000\times g$ for 10 min. The pellet was resuspended in Hepes buffer and recentrifuged as above. The final pellet was suspended in Hepes buffer at a concentration of 0.8-1 mg protein ml⁻¹.

2.2. Radioligand binding assay

For saturation studies, membranes (0.1 mg protein) were incubated with increasing concentrations of [³H]YM060 (0.01–0.2 nM) in a final volume of 0.5 ml for 30 min at 25° C. For competition studies, a single concentration (0.03 nM) of [³H]YM060 and four to six concentrations of agonists and antagonists were used. Incubation was terminated by rapid filtration through Whatman GF/B filters using a Brandel cell harvester

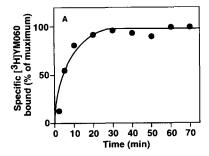
(Brandel, Gaithersburg, MD), followed by washing of the filter 3 times with 3 ml of ice-cold Hepes buffer. Radioactivity retained on the filters was counted with a liquid scintillation counter (Packard 2000CA). Nonspecific binding was determined in the presence of 1 μ M of tropisetron. The protein content of each membrane suspension was measured by the method of Bradford (1976).

2.3. Analysis of data

Values were expressed as the means \pm S.E.M. Comparisons between values from different groups were evaluated by analysis of variance. Probabilities of < 5%(P < 0.05) were considered significant. IC₅₀ values, the concentration required to inhibit specific binding by 50%, were calculated by logit-log analysis from the following equation (DeLean et al., 1978): $\log[(B_0 B_i / (B_i - B_n) = n[\log(\text{antagonist concentration}$ $log(IC_{50})$] where B_0 and B_i are binding in the absence and presence of the antagonist to be tested, respectively; B_n is non-specific binding and n is the slope factor identical to the Hill coefficient. The inhibition constants (K_i values) were calculated from IC₅₀ values using the following equation (Cheng and Prusoff, 1973): $K_i = IC_{50}/(1 + [L]/K_d)$ where [L] is the radioligand concentration and K_d is the dissociation constant of the radioligand.

Kinetic data were analyzed according to the procedure of Weiland and Molinoff (1981). The observed association rate constant $(K_{\rm obs})$ was calculated as the slope of the plot $\ln[B_{\rm e}/(B_{\rm e}-B_{\rm t})]$ versus time, according to the equation $B_{\rm t}=B_{\rm e}[1-{\rm e}^{-(K{\rm obs}\cdot{\rm t})}]$, where $B_{\rm t}$ is the amount of radioligand specifically bound at equilibrium. The dissociation rate constants were determined according to the equation $B_{\rm t}=B_0^{-(K-1\cdot{\rm t})}$, by plotting $\ln(B_{\rm t}/B_0)$ versus time; the slope of this plot is equal to K_{-1} . The association constant (K_{+1}) was calculated using the equation: $K_{+1}=(K_{\rm obs}-K_{-1})/L$ where L is the radioligand concentration. Kinetic $K_{\rm d}$ was calculated using the equation: $K_{\rm d}=K_{-1}/K_{+1}$.

2.4. Drugs


[³H]YM060 (78 Ci/mmol) was specially synthesized by Amersham International (Buckinghamshire, England) for Yamanouchi Pharmaceutical Co. (Tsukuba city, Japan). YM060, its enantiomer (S-form), YM114 (KAE-393, (R)-5-[(1-indolinyl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole monohydrochloride), ondansetron (1,2,3,9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazole-1-yl)methyl]-4H-carbazole-4-one monohydrochloride), granisetron (BRL43694, endo-1-methyl-N-(9-methyl-azabicyclo[3.3.1]non-3-yl)-1H-indazole-3-carboxamide), tropisetron (ICS205-930, endo-8-methyl-8-azabicyclo[3.2.1]oct-3-yl-1H-indole-3-car-

boxylate), *m*-chlorophenylbiguanide and 2-methyl-5-HT were prepared by Yamanouchi Pharmaceutical Co. 5-HT creatinine sulfate was purchased from E. Merck (Darmstadt, Germany). 8-OH-DPAT (8-hydroxy-2-(di-*n*-propylamino)tetralin) and ketanserin (1-(2,5-di-methoxy-4-indophenyl)-2-(di-*N*-propylamino)tetralin hydrobromide) were purchased from Research Biochemicals (Natick, MA). Methysergide (9,10-didehydro-*N*-[1-(hydroxymethyl)propyl]1,6-dimethylergoline-8-carboxamide) was kindly donated by Sandoz (Basle, Switzerland). For the competition analysis, YM060, YM114, granisetron and the enantiomer of YM060 were dissolved in 100% dimethyl sulfoxide (final 1%) and diluted with Hepes buffer.

3. Results

3.1. Association and dissociation analysis

The time course of association and dissociation of [3H]YM060 binding was examined in rat cerebral cortex membranes. [3H]YM060 rapidly associated with its binding sites in membranes, and reached steady state by 30 min at 25° C (Fig. 2A). Binding remained at steady state for at least 70 min. The observed association rate constant ($K_{\rm obs}$) was 0.18 ± 0.03 min $^{-1}$ (n = 3). Dissociation could be monitored by the addition of 1

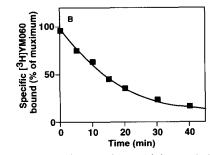
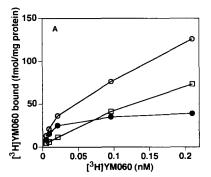



Fig. 2. (A) Time course of association and (B) dissociation of specific [3 H]YM060 binding to rat cerebral cortex. [3 H]YM060 (0.03 nM) binding was quantified as a function of time from the addition of ligand. The dissociation of the [3 H]YM060-receptor complex was monitored by the addition of 1 μ M tropisetron. Each point represents the average of three experiments in triplicate.

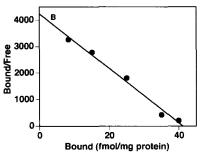


Fig. 3. (A) Total (\circ), specific (\bullet) and non-specific (\square) binding of [3 H]YM060 to rat cerebral cortex and (B) Scatchard plot. Rat cerebral cortex membranes were incubated with increasing concentrations of [3 H]YM060 (0.01–0.20 nM) at 25° C for 30 min. Non-specific binding was determined in the presence of 1 μ M tropisetron. These plots are representative of three separate determinations in triplicate.

 μM tropisetron after 30 min of association (Fig. 2B). The association constant (K_{+1}) was $4.46 \pm 0.99 \times 10^9$ M^{-1} s⁻¹ (n = 3). The dissociation rate constant (K_{-1}) was 0.05 ± 0.01 min⁻¹ (n = 3). The kinetically determined $K_{\rm d}$ was 12.2 ± 0.2 pM (n = 3).

3.2. Saturation analysis

Identification of [3 H]YM060 binding sites was carried out in membranes of rat cerebral cortex. Specific binding of [3 H]YM060 (0.01–0.2 nM, defined using 1 μ M tropisetron) in rat cortex was saturable, whilst non-specific binding increased linearly with ligand concentration (Fig. 3A). Scatchard analysis revealed that binding was apparently to a single site with high affinity (Fig. 3B) ($K_d = 8.4 \pm 0.2$ pM, $B_{max} = 37.0 \pm 0.3$ fmol/mg protein, n = 3).

3.3. Competition analysis

A variety of 5-HT₃ receptor agonists and antagonists, and ligands for other 5-HT receptors were tested for their ability to inhibit specific binding of [³H]YM060 in rat cerebral cortex membranes. The 5-HT₃ receptor agonists and antagonists dose dependently competed

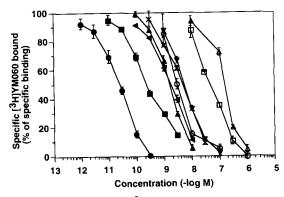


Fig. 4. Inhibition of specific [3 H]YM060 binding to rat cerebral cortex by YM060 (\bullet), YM114 (\blacksquare), granisetron (\blacktriangle), tropisetron (\blacktriangleleft), ondansetron (\blacktriangledown), the enantiomer of YM060 (S-form) (\times), m-chlorophenylbiguanide (\bigcirc), 5-HT (\square) and 2-methyl-5-HT (\triangle). Competitive binding experiments with [3 H]YM060 were performed in the absence and presence of four to eight concentrations of various 5-HT $_{3}$ receptor agonists and antagonists. Each point represents the mean \pm S.E.M. of three experiments in triplicate.

with [³H]YM060 binding (Fig. 4). pK_i values estimated for a series of compounds are shown in Table 1. The rank order of affinity was as follows: YM060 > YM114 > tropisetron > granisetron > m-chrolophenylbiguanide > the enantiomer of YM060 (S-form) > ondansetron > 2-methyl-5-HT > 5-HT. Ligands for other 5-HT receptors such as 8-OH-DPAT, methysergide and ketanserin at 10^{-4} M were inactive to inhibit [³H]YM060 binding.

Table 1 Inhibition of [³H]YM060 binding by various compounds in rat cerebral cortex

Compounds	pKi (-log M)	n_{H}
Antagonists		
YM060	11.47 ± 0.16	1.13 ± 0.07
YM114	10.76 ± 0.19	0.98 ± 0.19
Tropisetron	9.74 ± 0.18	0.94 ± 0.22
Granisetron	9.55 ± 0.09	0.98 ± 0.09
Ondansetron	8.89 ± 0.09	1.12 ± 0.08
S-form of YM060	9.12 ± 0.02	1.23 ± 0.07
Agonists		
m-Chlorophenylbiguanide	9.22 ± 0.07	1.36 ± 0.21
5-HT	7.94 ± 0.18	1.41 ± 0.15
2-Methyl-5-HT	7.68 ± 0.11	1.35 ± 0.29
Others		
8-OH-DPAT	< 4	
Methysergide	< 4	
Ketanserin	< 4	

Membranes were incubated with [3 H]YM060 (0.03 nM) and four to six concentrations of each compound. pKi values represent the means \pm S.E.M. of three separate experiments, except for the inactive compounds. The Hill coefficient represents the mean \pm S.E.M. of three separate experiments.

4. Discussion

The present study demonstrated that [³H]YM060 selectively binds to 5-HT₃ receptors in the rat cerebral cortex in a reversible and saturable manner with high affinity.

Competition analysis revealed that [3H]YM060 selectively recognized 5-HT₃ receptors. YM060, YM114, tropisetron, granisetron and ondansetron were used as selective 5-HT₃ receptor antagonists. These have been pharmacologically characterized with functional methods such as 5-HT- and 2-methyl-5-HT-induced contraction of the isolated colon of guinea pigs (Mivata et al., 1991a), the Bezold-Jarisch reflex in anesthetized rats (Miyata et al., 1991b, Miyata et al., 1993) and binding assays in brain and ileum of mice, nodose ganglion of rabbits and N1E-115 neuroblastoma cells (Bonhaus et al., 1993; Ito et al., 1992). The rank order of inhibitory activity in the present study (YM060 > YM114 > tropisetron > granisetron > ondansetron) was similar to that in these reports. m-Chlorophenylbiguanide and 2-methyl-5-HT were used as selective 5-HT₃ receptor agonists (Kilpatrick et al., 1990a). Both agonists also inhibited specific binding of [3H]YM060. However, other 5-HT receptor ligands such as 8-OH-DPAT (5-HT_{1A} receptor agonist), methysergide (5-HT_{1.2} receptor antagonist) and ketanserin (5-HT₂ receptor antagonist) were inactive to inhibit specific binding. These findings therefore confirm that [3H]YM060 is a 5-HT₃ receptor-specific radioligand.

The affinity of [3H]YM060 in the rat cerebral cortex $(K_d = 8.4 \pm 0.2 \text{ pM})$ was significantly higher than that of the other 5-HT₃ receptor radioligands. The K_d value was similar to the K_i value obtained for unlabeled YM060 in competition analysis (p $K_i = 11.47 \pm$ 0.16) and kinetically determined K_d value (12.0 \pm 0.2 pM). Specific binding of [3H]YM060 ranged from 65% to 70% when the ligand concentration was 0.03 nM. In an experiment with the same conditions, the specific binding of [3H]GR65630 and [3H]BRL43694 in the rat cerebral cortex was so small (20% and 30%) that it was difficult to analyze the subsequent data (data not shown). There still remain many problems regarding the 5-HT₃ receptor that are not clarified, such as structural characteristics, transductional characteristics and inter- or intra-species heterogeneity (Martin and Humphrey, 1994). For the further characterization of 5-HT₃ receptor, radioligand binding experiments using native tissue will be needed. However, the concentration of 5-HT₃ receptors in native tissue such as rat, guinea pig, rabbit and human is low (Barnes et al., 1988a; Kilpatrick et al., 1989). [3H]YM060 can be used as a 5-HT₃ receptor radioligand in tissues with low receptor concentration. Although the specific activity of [3H]YM060 is high (78 Ci/mmol) among the tritiated radioligands, there is an iodinated radioligand, [125 I]zacopride, which has higher specific activity (1100 Ci/mmol) than tritiated radioligands (Laporte et al., 1992). [125 I]Zacopride is a useful radioligand for autoradiographic assays. In contrast, [3 H]YM060 has higher affinity than [125 I]zacopride ($K_{\rm d}=4.3$ nM). Furthermore, low non-specific binding of [3 H]YM060 is more important in binding assays. In general, [3 H]YM060 has characteristics that make it advantageous as radioligand for 5-HT $_{3}$ receptor study.

[3H]YM060 may have several features that will be useful for 5-HT₃ receptor analysis. First, Bonhaus et al. (1993) reported that the affinity of YM060 in CD-1 mouse cortex using [3 H]RS-42358-197 (p $K_{i} = 9.5 \pm$ 0.18, $n_{\rm H} = 0.70 \pm 0.09$) was different from that in CD-1 mouse ileum (p $K_i = 10.0 \pm 0.12$, $n_H = 0.94 \pm 0.2$). Compared with RS-42358-197, YM060 had a higher affinity in ileum than in cortex. Second, the K_d value of YM060 (8.4 pM) obtained in the present study was about 10-fold higher than that (0.091 nM) obtained from [3H]GR65630 binding in N1E-115 cells (mouse neuroblastoma) (Ito et al., 1992). This result may suggest that the affinity of [3H]YM060 is different in different species. However, further studies will be needed to establish these features. High affinity and low non-specific binding of [3H]YM060 will be helpful.

The Hill coefficient of 5-HT₃ receptor agonists and antagonists in competition analysis showed the same trend as that for other 5-HT₃ receptor radioligands: the Hill coefficient of antagonists was close to unity, but that of agonists was greater than unity (not statistically significant) in our studies. The same results have been reported for [³H]GR65630 (Kilpatrick et al., 1987), [³H]GR67330 (Kilpatrick et al., 1990b) and [³H]RS-42358-197 (Wong et al., 1993) in rat brain membrane. These results have not been well explained, but may reflect positive cooperativity.

In conclusion, [³H]YM060 is a highly potent and selective antagonist radioligand for the 5-HT₃ receptor. The specific binding of [³H]YM060 is high enough to study the 5-HT₃ receptor. Further study is now underway in tissues with low receptor concentration, not only from rats but also other species. Thus, [³H]YM060 is likely to be a very useful radioligand for further characterizing the 5-HT₃ receptor.

References

- Barnes, N.M., B. Costall, J.W. Ironside and R.J. Naylor, 1988a, Identification of 5-HT₃ recognition sites in human brain tissue using [³H]zacopride, J. Pharm. Pharmacol. 40, 668.
- Barnes, N.M., B. Costall and R.J. Naylor, 1988b, [³H]Zacopride: a ligand for the identification of 5-HT₃ recognition sites, J. Pharm. Pharmacol. 40, 548.
- Barnes, J.M., B. Costall, J. Coughlan, A.M. Domeney, P.A. Gerrard, M.E. Kelly, R.J. Naylor, E.S. Onaivi, D.M. Tomkins and M.B. Tyers, 1990, The effects of ondansetron, a 5-HT₃ receptor antag-

- onist, on cognition in rodents and primates, Pharmacol. Biochem. Behav. 35, 955.
- Bonhaus, D.W., E.H.F. Wong, E. Stefanich, E.A. Kunysz and R.M. Eglen, 1993, Pharmacological characterization of 5-hydroxy-tryptamine₃ receptors in murine brain and ileum using the novel radioligand [³H]RS-42358-197: evidence for receptor heterogeneity, J. Neurochem. 61, 1927.
- Bradford, M.M., 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248.
- Cheng, Y.C. and W.H. Prusoff, 1973, Relationship between the inhibition constant (K_i) and the concentration of inhibitor which cause 50% inhibition (IC₅₀) of an enzymatic reaction, Biochem. Pharmacol, 22, 3099.
- DeLean, A., P.J. Munson and D. Rodbard, 1978, Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose- response curves, Am. J. Physiol. 235, E97.
- Derkach, V., A. Surprenant and R.A. North, 1989, 5-HT₃ receptors are membrane ion channels, Nature 339, 706.
- Fozard, J.R., 1984, Neuronal 5-HT receptors in the periphery, Neuropharmacology 23, 1473.
- Fozard, J.R., 1987, 5-HT₃ receptors and cytotoxic drug-induced vomiting, Trends Pharmacol. Sci. 8, 44.
- Hoyer, D. and H.C. Neijt, 1988, Identification of serotonin 5-HT₃ recognition sites in membrane of N1E-115 neuroblastoma cells by radioligand binding, Mol. Pharmacol. 33, 303.
- Hoyer, D., D.E. Clarke, J.R. Fozard, P.R. Hartig, G.R. Martin, E.J. Mylecharane, P.R. Saxena and P.P.A. Humphrey, 1994, International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin), Pharmacol. Rev. 46, 157.
- Ito, H., K. Hidaka, K. Miyata, T. Kamato, A. Nishida and K. Honda, 1992, Characterization of YM060, a potent and selective 5-hydroxytryptamine₃ receptor antagonist, in rabbit nodose ganglion and N1E-115 neuroblastoma cells, J. Pharmacol. Exp. Ther. 263, 1127.
- Jones, B.J., B. Costall, A.M. Domeney, M.E. Kelly, R.J. Naylor, N.R. Oakley and M.B. Tyers, 1988, The potential anxiolytic activity of GR38032F, a 5-HT₃-receptor antagonist, Br. J. Pharmacol. 93, 085
- Kilpatrick, G.J., B.J. Jones and M.B. Tyers, 1987, Identification and distribution of 5-HT₃ receptors in rat brain using radioligand binding, Nature 330, 746.
- Kilpatrick, G.J., B.J. Jones and M.B. Tyers, 1989, Binding of the 5-HT₃ ligand, [³H]GR65630, to rat area postrema, vagus nerve and the brains of several species, Eur. J. Pharmacol. 159, 157.
- Kilpatrick, G.J., A. Butler, J. Burridge and A.W. Oxford, 1990a, 1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT₃ receptor agonist, Eur. J. Pharmacol. 182, 193.
- Kilpatrick, G.J., A. Butler, R.M. Hagan, B.J. Jones and M.B. Tyers, 1990b, [³H]GR67330, a very high affinity ligand for 5-HT₃ receptors, Naunyn Schmiedebergs Arch. Pharmacol. 342, 22.
- Laporte, A.M., E.J. Kidd, D. Verge, H. Gozlan and M. Hamon, 1992, Autoradiographic mapping of central 5-HT₃ receptors, in: Central and Peripheral 5-HT₃ receptors, ed. M. Hamon (Academic Press, London) p. 157.
- Martin, G.R. and P.P.A. Humphrey, 1994, Receptors for 5-hydroxy-tryptamine: current perspectives on classification and nomenclature, Neuropharmacology 33, 261.
- Miyata, K., T. Kamato, A. Nishida, H. Ito, Y. Katsuyama, A. Iwai, H. Yuki, M. Yamano, R. Tsutsumi, M. Ohta, M. Takeda and K. Honda, 1991a, Pharmacologic profile of (R)-5-[(1-methyl-3-in-dolyl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole hydrochloride (YM060), a potent and selective 5-hydroxytryptamine₃ receptor antagonist, and enantiomer in the isolated tissue, J. Pharmacol. Exp. Ther. 259, 15.

- Miyata, K., T. Kamato, Y. Yamano, A. Nishida, H. Ito, Y. Katsuyama, H. Yuki, R. Tsutsumi, M. Ohta, M. Takeda and K. Honda, 1991b, Serotonin (5-HT)₃ receptor blocking activities of YM060, a novel 4,5,6,7-tetrahydrobenzimidazole derivative, and its enantiomer in anesthetized rats, J. Pharmacol. Exp. Ther. 259, 815.
- Miyata, K., T. Kamato, A. Nishida, H. Ito, H. Yuki, M. Yamano, R. Tsutsumi, Y. Katsuyama and K. Honda, 1992, Role of serotonin₃ receptor in stress-induced defecation, J. Pharmacol. Exp. Ther. 261, 297.
- Miyata, K., H. Ito, M. Yamano, K. Hidaka, T. Kamato, A. Nishida and H. Yuki, 1993, Comparison of the effects of trimebutine and YM114 (KAE-393), a novel 5-HT₃ receptor antagonist, on stressinduced defecation, Eur. J. Pharmacol. 250, 303.
- Maricq, A.V., A.S. Peterson, A.J. Brake, R.M. Myers and D. Julius, 1991, Primary structure and functional expression of the 5-HT₃ receptor, a serotonin-gated ion channel, Science 254, 432.
- Nelson, D.R. and D.R. Thomas, 1989, [³H]BRL43694(granisetron), a specific ligand for 5-HT₃ binding sites in rat brain cortical membranes, Biochem. Pharmacol. 38, 1693.
- Weiland, G.A. and P.B. Molinoff, 1981, Quantitative analysis of drug-receptor interactions: I. determination of kinetic and equilibrium properties, Life Sci. 29, 313.
- Wong, E.H.F., D.W. Bonhaus, I. Wu, E. Stefanich and R.M. Eglen, 1993, Labelling of 5-hydroxytryptamine₃ receptors with a novel 5-HT₃ receptor ligands, [³H]RS-42358-197, J. Neurochem. 60, 921.